BAB II

TINJAUAN PUSTAKA

II. 1Landasan Teori

II.1. 1 Bahan Bakar Mesin Diesel

Bahan bakar merupakan suatu bahan zat atau material yang digunakan untuk melakukan proses pembakaran yang menghasilkan energi. Bahan bakar dapat berbentuk padatan, cairan atau gas. Bahan bakar umumnya digunakan dalam sektor transportasi, industri, pertamina dan keperluan rumah tangga. Bahan bakar ini dapat berfungsi menjalankan mesin atau menghasilkan panas atau listrik. (Syamsul Dwi Maarif, 2022).

Bahan bakar diesel adalah salah satu jenis produk pengolahan minyak bumi atau dapat disebut dengan minyak mentah. Minyak diesel atau solar pada kilang minyak, dihasilkan setelah fraksi-fraksi ringan minyak dipisahkan. Bahan bakar diesel adalah hidrokarbon yang mengandung senyawa anatara hydrogen dan carbon, seperti *benzine*, *pentane*, *hexane*, *toluene*, *dan butane*. Pada mesin diesel menggunakan bahan bakar yang menggunakan unsur berdasarkan angka setana atau *cetane number* (CN). Angka setana merupakan ukuran yang menunjukan kualitas dari bahan bakar mesin diesel. Dimana angka setana tinggi akan mempermudah dalam terbakarnya bahan bakar pada saat kompresi (pertamina, 2023).

Bahan bakar mesin diesel atau gasoil merupakan jenis bahan bakar menggunakan unsur yang dibedakan berdasarkan angka setana atau *cetana number* (CN). Angka setana adalah ukuran unjuk kerja penyalaan pada bahan bakar, dengan angka setana yang tinggi dapat memperkecil waktu keterlambatan penyalaan bahan bakar.

Bahan Bakar Minyak (BBM) merupakan istilah yang digunakan untuk menggambarkan jenis bahan bakar yang berasal dari minyak bumi. Bahan bakar adalah sumber energi yang penting dalam berbagai sektor kehidupan manusia, seperti transportsi yaitu kendaraan bermotor, pesawat terbang, kapal), pembangkit Listrik, industri dan lain-lain. Ada beberapa macam bahan bakar untuk mesin diesel yaitu:

1) Biosolar

Biosolar merupakan jenis bahan bakar yang memiliki angka setana 48 dan mengandung sulfur 3.500 ppm. Biosolar adalah jenis bahan bakar alternatif yang tercipta atau terbuat dari campuran bahan bakar fosil yaitu bahan bakar solar (diesel) dengan bahan jenis organik yang disebut sebaga biomassa, seperti minyak kelapa sawit, limbah tumbuhan datau sampah organik. Biosolar merupakan bahan bakar destilasi dengan kandungan minyak nabati atau Biodiesel yang memiliki besar campuran sesuai dengan regulasi Peraturan Menteri Energi dan Sumber Daya Mineral (ESDM) Nomor 12 Tahun 2015 yaitu B30 pencampuran 30% biodiesel dan 70% solar untuk menghasilkan produk Biosolar B30. Bahan bakar ini digunakan pada mesin diesel dengan putaran tinggi pada sektor kendaraan komersil, pertambangan, perkapalan, dan lain sebagainya.

2) Dexlite

Dexlite merupakan varian bahan bakar diesel yang memiliki angka setana dengan minimal 51 dan mengandung Sulfur maksimal 1200 ppm dapat diartikan bahwa bahan bakar Dexlite menghasilkan emisi yang ramah terhadap lingkungan serta irit dalam pemakaian. Sesuai dengan regulasi peraturan Menteri ESDM Nomor 12 Tahun 2015 mulai 1 Januari 2020 bahwa Dexlite dicampur sebesar 30% menjadi B30.

3) Pertamina Dex

Pertamina Dex adalah jenis bahan bakar minyak non subsidi jenis diesel yang dirancang untuk merespon perkembangan kendaraan diesel yang membutuhkan performa mesin baik serta ramah lingkungan. Pertamina Dex dengan angka setana tertinggi yaitu 53 dengan Sulfur 300 ppm, yang mampu dalam menjaga mesin dan meningkatkan tenaga mesin secara maksimal serta dapat menjaga lingkungan dengan menghasilkan emisi gas buang yang rendah.

4) Shell V-Power Diesel

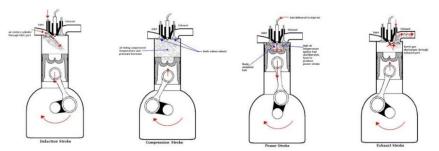
V-Power Diesel merupakan jenis Bahan Bakar Minyak Shell dengan kandungan angka setana 51 dan sulfur 10 ppm. Pada Shell V-Power Diesel memenuhi standar Euro 5 yang dapat digunakan untuk berbagai jenis mesin diesel.

5) Shell Diesel Extra

Diesel Extra merupakan jenis Bahan Bakar Minyak Shell dengan kandungan bahan bakar nabati 30% pada kandungan ini disesuaikan dengan peraturan Peraturan Menteri ESDM Nomor 12 Tahun 2015. Spesifikasi pada Diesel Extra memiliki kandungan angka setana 49 dengan kandungan sulfur 500 ppm

II.1. 2 Emisi Gas Buang

Emisi atau gas buang adalah hasil pembakaran bahan bakar di mesin pembakaran dalam atau *internal combustion engine*. Emisi sangat berperan dalam pencemaraan udara dan memiliki dampak yang sangat besar terhadap kesehatan manusia dan lingkungan. Bahaya kandungan dalam emisi gas buang diantaranya; Karbon Monoksida (CO) gas ini memiliki warna dan bau yang sangat beracun. Jika terhirup manusia akan berakibat fatal. Karbon Dioksida (CO2) memiliki dampak yang sangat berbahaya karena berpengaruh terhadap pemanasan global. Nitrogen Oksida (NO atau NOx) dapat berpengaruh terhadap gangguan saluran pernafasan dan perih pada mata. Hidrokarbon (HC) gas ini berasal dari pembakaran yang tidak sempurna di dalam mesin mobil (Indonesia, 2022).


Laju pertumbuhan pada kendaraan bermotor mengakibatkan peningkatan emisi gas buang kendaraan. Terdapat kendaraan dengan emisi gas buang kurang atau lebih dari ambang batas. Emisi gas buang yang tidak sesuai dengan ambang batas dapat mencemari udara, berbahaya bagi kesehatan manusia terutama pada sistem pernapasan dan kerusakan lingkungan akibat polusi udara. Pemerintah melalui Peraturan Menteri Lingkungan Hidup Nomor 8 Tahun 2023 tentang Penerapan Baku mutu Emisi Kendaraan Bermotor menetapkan ambang batas emisi gas buang. Data ambang batas untuk kendaraan diesel dapat dilihat berikut ini.

 a. Maksimal 65% HSU (Hartridge Smoke Unit) pada kendaraan tahun <2010 dengan JBB ≤ 3,5 ton menggunakan metode uji percepatan bebas.

- b. Maksimal 40% HSU (*Hartridge Smoke Unit*) pada kendaraan tahun 2010-2021 dengan JBB ≤ 3,5 ton menggunakan metode uji percepatan bebas.
- c. Maksimal 30% HSU (*Hartridge Smoke Unit*) pada kendaraan tahun >2021 dengan JBB $\leq 3,5$ ton menggunakan metode uji percepatan bebas.
- d. Maksimal 65% HSU (*Hartridge Smoke Unit*) pada kendaraan tahun <2010 dengan JBB > 3,5 ton menggunakan metode uji percepatan bebas.
- e. Maksimal 40% HSU (*Hartridge Smoke Unit*) pada kendaraan tahun 2010-2021 dengan JBB > 3,5 ton menggunakan metode uji percepatan bebas.
- f. Maksimal 35% HSU (*Hartridge Smoke Unit*) pada kendaraan tahun >2021 dengan JBB > 3,5 ton menggunakan metode uji percepatan bebas.

II.1. 3 Mesin Diesel Kendaraan Bermotor

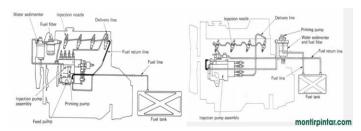
Motor diesel merupakan salah satu jenis mesin yang telah dikembangkan oleh manusia dalam memenuhi kebutuhannya, yaitu kebutuhan akan tenaga yang besar. Pada mesin ini dijuluki sebagai mesin ICE (Internal Cobustion Engine) yang memiliki kemampuan tekanan kompresi serta memiliki bahan bakar yang terjangkau. Motor diesel biasanya digunakan untuk menggerakan kendaraan bus, truk, bahkah hingga kereta api dan kapal menggunakan motor diesel. Motor diesel lebih dipilih pada kendaraan angkutan penumpang dan barang karena memiliki karakteristik khusus dengan material yang lebih kuat dan torsi yang besar (Sufi, 2022).

Gambar II. 1 Tahapan pembakaran

(deltarekaprimasakti.com)

Pada mesin diesel terdapat prinsip kerja dengan 4 tahapan dalam proses pembakaran, keempat tahapan itu adalah hisap, kompresi, bakar dan buang.

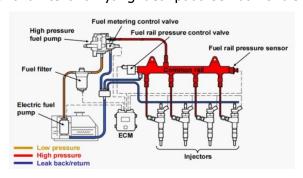
II.1. 4 Sistem Pembakaran Mesin Diesel


Motor diesel termasuk pada kelompok mesin pembakaraan dalam atau internal combustion engine yang digunakan untuk melakukan proses pembakaran bahan bakar (solar) yang diinjeksikan dalam mesin dengan menggunakan panas udara hasil akhir proses kompresi dan menghasilkan tenaga. Energi panas hasil pembakaran tersebut kemudian ditransformasikan menjadi tenaga motor diesel. Proses penyediaan bahan bakar inilah yang disebut dengan sistem bahan bakar. Sistem bahan bakar merupakan sistem penting dalam mesin diesel. Mesin diesel merupakan jenis mesin yang mempunyai karakteristik performa yang handal dengan pemakaian bahan bakar yang irit. Secara umum jenis sistem bahan bakar terbagi menjadi dua, yakni sistem kovensional dan sistem common rail.

Tabel II 1 Perbedaan Konvensional & *Common Rail* (Prasetyo, 2023)

Perbedaan	Konvensional	Common Rail
Prinsip Kerja	Injeksi langsung	Injeksi sistem pipa umum
	mekanis	dengan pengaturan elektronik
Kelebihan	Daya tahan lebih	Efisiensi pembakaran lebih baik,
	lama	getaran lebih sedikit, tingkat
		kebisingan rendah
Kekurangan	Emisi gas buang	Biaya tinggi
	tinggi, getaran	
	tinggi, suara	
	bising	
Performa	Torsi yang lebih	Respon cepat, tingkat kinjera
	tinggi	lebih tinggi pada kecepatan dan
		askelerasi tertentu.
Efisiensi	Konsumsi bahan	Konsumsi bahan bakar efisiensi
	bakar efisiensi	
Tekanan	Timing pengapian	Diatur sesuai kebutuhan
	tercapai (interval	(konsta)
	tertentu)	

1. Sistem Konvensional


Sistem bahan bakar konvensional merupakan sistem bahan bakar yang menggunakan mekanisme dengan pompa injeksi yang diperuntukan menginjeksikan solar melalui *injector* dengan *timming* yang tepat. Pada mesin diesel konvensional, udara dalam silinder dikompresikan hingga menjadi panas dan bahan bakar solar disemprotkan dalam bentuk kabut langsung menuju dalam silinder pada akhir kompresi (Montirpedia, 2022).

Gambar II. 2 Sistem Bahan Bakar Diesel Tipe In-Line & Tipe Distributor (montirpintar.com)

2. Sistem Common Rail

Common rail merukapan sistem injeksi bahan bakar motor diesel dengan menggunakan proses penyaluran bahan bakar dengan dialirkan melalui pipa rail dan timing injeksi. Jumlah pada bahan bakar yang diinjeksikan dengan dikontrol secara elektronik (enggar, 2019). Common rail adalah sebutan untuk sistem EFI (electronic fuel injector) pada mesin diesel, dapat diartikan bahwa sistem common rail merupakan mekanisme kelistrikan yang digunakan untuk menyuplai solar dari tangki menuju dalam runag bakar. Menggunakan tekanan yang ideal pada semua kondisi.

Gambar II. 3 Sistem Common Rail

(www.montirpintar.com)

II. 2Penelitian Relevan

Tabel II. 1 Penelitian Relevan

No	Penulis	Judul	Metode	Hasil Penelitian
1	(Helmy	Analisis Pengaruh	Eksperimen	Penambahan FAME kadar
	Fadillah,	Penggunaan	dengan	40% pada bahan bakar solar
	2020)	Biodiesel B40,	pengolahan	masih dapat digunakan
		Dexlite B40, dan	data stastistik	namun pada penurunan daya
		Pertamina Dex	dengan	tersebut tidak terlalu
		Terhadap	aplikasi SPPS.	signifikan. Konsumsi bahan
		Performa,	Teknik Uji	bakar tidak adanya
		Konsumsi Bahan	Repeated	perbedaan hasil rata-rata
		Bakar. Dan Emisi	Measure.	antara jenis bahan bakar, dan
		Gas Buang		pada emisi gas buang
		Kendaraan		terdapat penurunan nilai hasi
		Common Rail		rata-rata bahan bakar.
2	(Baety	Pengaruh	Analisis	Bahan bakar solar B30
	Indah	penggunaan Jenis	deskriptif	menghasilkan rata-rata
	Fatimah,	Bahan Bakar	dengan uji T-	opasitas terbesar yaitu
	2020)	Solar B30 dan	test	0,6422 dan Pertamina Dex
		Pertamina Dex	Independent.	sebesar 0,3744.
		Terhadap	Menggunakan	Daya bahan bakar Solar B30
		Opasitas, Daya,	program SPSS.	menghasilkan rata-rata
		dan Konsumsi		37,4928 dan Pertamina Dex
		Bahan Bakar Pada		menghasilkan rata-rata
		Mobil Kijang		sebesar 64,9250.
		Innova <i>Diesel</i>		Hasil rata-rata konsumsi
		Common Rail		bahan bakar Pertamina Dex
				lebih irit dengan hasil
				35,9944 sedangkan Solar B30
				sebesar 54,0022.
3	(Mariadi	Pengaruh	Analisis	Daya yang dihasilkan pada
	Kaharmen,	Penggunaan Jenis	deskriptif	bahan bakar Pertamina Dex

	2020)	D-l D-l	4	
	2020)	Bahan Bakar	dengan uji Two	memiliki rata-rat paling tinggi
		Solar B20, Dexlite	Way Anova,	sebesar 7,847 hp.
		B20, dan	menggunakan	Hasil rata-rata konsumsi
		Pertamina Dex	program SPSS.	bahan bakar menunjukan
		Terhadap		bahwa bahan bakar Dexlite
		Opasitas Daya		B20 lebih irit dibandingkan
		Dan Konsumsi		Pertamina Dex dan Biosolar
		Bahan Bakar Pada		B20.
		Innovasi Diesel		
		Common Rail		
4	(Marino,	Pengaruh	Eksperimen	Pada bahan bakar Dexlite
	2020)	Penggunaan	dengan analisi	B30, B40 dan B50
		Biodiesel Dexlite	Two Way	menghasilkan daya tertinggi
		B30, B40, dan	Manova	yaitu pada Dexlite B30 dan
		B50 terhadap	(Multivariat	terendah Dexlite B50 dan
		Daya Mesin,	Anova)	daya terbaik yaitu pada
		Konsumsi Bahan		kecepatan 100 km/jam dan
		Bakar dan Emisi		hasil rata rata 35,389 hp
		Gas Buang pada		Konsumsi bahan bakar
		Kendaraan <i>Diesel</i>		terbaik pada kecepatan 80
		Common Rail		km/jam dengan hasil rata-
				rata 32,778 ml.
				Emisi gas buang terbaik pada
				yaitu pada kecepatan 80
				km/jam dan 100 km/jam
				dengan hasil rata-rata 4,056
				ppm
5	(Iqlima	Pengaruh	Eksperimen	Hasil kepekatan asap
	and	Penggunan Bahan		tertinggi pada Biosolar
	Firdaus,	Bakar Biosolar		dengan zat aditif 34,1%,
	2021)	Dengan Zat Aditif,		Solar Dexlite tertinggi 26,5%
		Solar Dexlite dan		dan Pertamina Dex hasil

Pertamina Dex	17,3%. Ketiga tingkatan
pada Mitsubishi	tersebut diperoleh pada
L300 Diesel	putaran 4200 rpm.
Tahun 2007	Penggunaan jenis bahan
Terhadap	bakar dengan zat aditif belum
Kepekatan Asap	mampu melampaui Tingkat
Kendaraan	efetivitas bahan bakar lainnya
	paling tinggi dengan Biosolar

Pada penelitian yang relevan ini memiliki kesamaan dengan penilitian yang diambil yaitu menggunakan jenis bahan bakar Biosolar B30, Dexlite B30, Pertamina Dex, dan menggunakan metode uji Eksperimen. Perbedaan pada penelitian yang relevan dengan penelitian ini yaitu menggunakan perbandingan hasil uji emisi pada jenis bahan bakar Shell V-Power Diesel dan Shell Diesel Extra. Bahan penelitian menggunakan kendaraan jenis barang dengan sistem pembakaran jenis konvensional dan *common rail*. Pengolahan data dianalisis dengan Uji Manova menggunakan aplikasi SPSS